Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518601

RESUMO

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.


Assuntos
Apoptose , Proliferação de Células , NAD(P)H Desidrogenase (Quinona) , Naftoquinonas , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Apoptose/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Sinergismo Farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
2.
Sci Rep ; 11(1): 23292, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857786

RESUMO

Primary Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population.


Assuntos
Autoanticorpos , Epigenômica , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Variação Genética , Antígenos HLA/genética , Interferons/genética , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Metilação de DNA/genética , Feminino , Humanos , Masculino , Síndrome de Sjogren/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...